[E-BOOK GRÁTIS]: Windows 7 Básico, 476 pgs - QUERO RECEBER!
Você está em: PrincipalTutoriaisJorgeasantos : Matematicaconcursos005
Quer receber novidades e e-books gratuitos?
›››

Conheça o Júlio Battisti

Julio Battisti - Autor de mais de 25 livros de informática Júlio Battisti tem mais de 36 livros publicados, dezenas de e-books e é certificado Microsoft.

Ganhe o e-book a Seguir

e-book grátis Windows 7 Básico

476 páginas



Curta Nossa Fanpage

Loja Virtual do Site

Livros do Julio Battisti

FILTRO DE TUTORIAIS:




Matemática para Concursos– 5ª Parte

 

Este tutorial trará uma série de tópicos sobre matemática básica de nível primário e secundário e que são pontos fundamentais em concursos públicos realizados, e até mesmo podem servir como fonte de consultas e recursos. Neste quinto tutorial serão visto as questões com números denominados : MMC e MDC (Mínimo Múltiplo Comum) e (Máximo Divisor Comum). Serão observadas e acompanhadas as definições técnicas deste tema, e realizados exemplos de cálculos. Este tutorial não tem como objetivo ser apenas a única fonte de leitura, sendo necessário o estudo em livros técnicos e um acompanhamento personalizado em questões de maior abrangência, porém serve como uma fonte de direcionamento e consulta.

Múltiplos Comuns e Mínimos Múltiplos Comuns (MMC)

* Definição

Se informados dois ou mais números inteiros e que não sejam nulos, ou seja = 0, os conjuntos dos múltiplos destes dados números, terão sempre infinitos elementos comuns a todos eles, os quais podemos definir como múltiplos comuns.

Então é possível dizer que um número natural (N) (a) é múltiplo de outro natural (b), se existe um número natural Q, que satisfaça:

a = Q x b

* Primeiras Observações

Analisando os dados informados abaixo, mais adiante se farão algumas conclusões:

1) M (4) ={0, +/-4, +/-8, +/- 12, +/-16, +/-20, +/-24, +/-28, +/-32, +/-36, +/-40...}

2) M (6) = {0, +/-6, +/-12, +/- 18, +/-24, +/-30, +/-36, +/-42, +/-48, +/-54, +/-60...}

3) M (8) = {0, +/-8, +/-16, +/- 24, +/-32, +/-40, +/-48, +/-56, +/-64, +/-72, +/-80...}

É observado que possuímos nos resultados de multiplicação alguns valores que são comuns a todos eles, nos conjuntos números formados acima:

Neste caso o número comum a todos os elementos é : +/-24.

* Como calcular o conjunto dos múltiplos

Dado a definição:

a = Q x b

Temos que a é múltiplo de b se podermos conhecer b e se queremos obter todos os múltiplos respectivos, basta fazer com que a variável Q assuma todos os números naturais possíveis.

Para se obter os múltiplos de 3, isto é os números que satisfaça a sentença a = Q x 3, onde Q é substituído por todos os números naturais que se possa ter.

Veja alguns cálculos:

0 >>>>>> a = Q x b -> 0 = 0 x 3

0 >>>>>> a = Q x b -> 3 = 1 x 3

0 >>>>>> a = Q x b -> 6 = 2 x 3

0 >>>>>> a = Q x b -> 9 = 3 x 3

0 >>>>>> a = Q x b -> 12 = 4 x 3

O conjunto formado pelos números naturais é infinito, desta forma podemos ter infinitos múltiplos que formam os conjuntos dos multiplicadores M(x)

Então, calculando os múltiplos de 9, temos:

M(9) = {0,18,27,36,45,54,63,72,80...}

* Multiplicador Universal

É notado que sempre estamos colocando o número “ 0” em nossos conjuntos, pois ele é considerado número natural (N).

Desta forma o número “ 0” será múltiplo de todo número natural. Tendo Q = 0 na sentença a = Q.b, temos com resultado a = 0 para todo número b natural.

Veja os exemplos:

a = Q X b >> a = 0 x 1-> a = 0

a = Q X b >> a = 0 x 2-> a = 0

a = Q X b >> a = 0 x 3-> a = 0

a = Q X b >> a = 0 x 4-> a = 0

a = Q X b >> a = 0 x 5-> a = 0

* Mínimo Múltiplo Comum (MMC)

O Mínimo Múltiplo Comum (MMC) de dois ou mais números inteiros e não nulos, pode ser definido ao menor número positivo que seja múltiplo de todos os números dados na sentença.

Desta forma, no exemplo pratico no início do tutorial:

1) M (4) ={0, +/-4, +/-8, +/- 12, +/-16, +/-20, +/-24, +/-28, +/-32, +/-36, +/-40...}

2) M (6) = {0, +/-6, +/-12, +/- 18, +/-24, +/-30, +/-36, +/-42, +/-48, +/-54, +/-60...}

3) M (8) = {0, +/-8, +/-16, +/- 24, +/-32, +/-40, +/-48, +/-56, +/-64, +/-72, +/-80...}

Temos que MMC de (4,6,8) = 24, pois este é o menor número positivo que é múltiplo de 4,6,8, simultaneamente.

* Determinando o MMC através do método de decomposição em fatores primos

Siga o raciocínio dos cálculos abaixo:

Ex.: Determinar o MMC dos números 12, 18, 24

1) Decomponha os números dados em fatores primos

12 , 18, 24 |2

6, 9, 12 |2

3, 9, 6 |2

3, 9, 3 |3

1, 3, 1 |3

1, 1, 1

2 x 3²

Explicando os cálculos:

Anotar a esquerda todos os números envolvidos na sentença e traçar um traço vertical.

Anotar na linha à direita após o traço vertical o menor número primo que seja capaz de dividir algum dos números dados que estão à esquerda. Faça a divisão e anote abaixo dos números o resultado obtido da divisão (se divisível é claro) ou então repita o mesmo número se não for possível efetuar a divisão. Repita os mesmos procedimentos até que todos os números propostos estejam em unidade.

2) O MMC dos números 12,18,24 será o produto de todos os fatores primos resultantes encontrados, tomando sempre os maiores expoentes encontrados, dentro todos os números decompostos:

MMC (12,18,24) = 2 x 3² = (2x2x2)x(3x3) = 72

Então, após efetuado a decomposição de todos os fatores primos dos números dados, basta fazer a multiplicação de todos os termos encontrados.

Divisores Comuns e Máximo Divisor Comum (MDC)

* Definição

Informados dois números inteiros e que não sejam nulos (# 0), diferente de zero, temos os conjuntos dos divisores destes números e que terão sempre dois ou mais números comuns a todos eles, aos quais são denominados divisores comuns.

Ou seja, dois números naturais têm sempre divisores comuns.

Faça a observação dos números divisores dos seguintes elementos:

D (24) = {+/-1, +/-2, +/-3, +/-4, +/-6, +/- 8, +/- 12, +/-24}

D (36) = {+/-1, +/-2, +/-3, +/-4, +/-6, +/- 12, +/-36}

Chamamos de MDC (Máximo Divisor Comum) de dois elementos o número maior dentre os divisores dos números apresentados.

Assim o MDC (24,36) = 12

* Como calcular o conjunto dos múltiplos

 

No processo para se calcular o MDC (Máximo Divisor Comum), efetuamos basicamente duas formas para chegar ao resultado:

1) a decomposição dos números até chegar a uma divisão exata

MDC (12,16) =

Desta forma o MDC é resultado da multiplicação dos fatores primos comuns entre os resultados na divisão.

MDC (12,16) = 2 x 2 = 4

2)Divisão do maior número pelo menor número

Regra prática:

Nesta forma dividi-se o número maior pelo número menor, efetuando várias divisões até chegar uma divisão exata.

O divisor então, deste cálculo será chamado de MDC (Máximo Divisor Comum).

 

Desta forma, efetuamos várias divisões até chegar a uma divisão exata. O divisor desta divisão será então o MDC. Acompanhe o cálculo do m.d.c.(30,18).

Acompanhe:

1º) dividimos o número maior pelo número menor


            30 / 18 = 1 (com resto 12 )

2º) dividimos o divisor 18, que é divisor da divisão anterior, por 12, que é o resto da divisão anterior, e assim sucessivamente:


            18 / 12 = 1 (com resto 6 )

12 / 6 = 2 (com resto zero – divisão exata)

3º) O divisor da divisão exata é 6. Então MDC (30,18) = 6.

Nas próximas lições veremos mais sobre os principais temas de matemática para concursos.

Até a próxima.

Dúvidas?

Utilize a área de comentários a seguir.

Me ajude a divulgar este conteúdo gratuito!

Use a área de comentários a seguir, diga o que achou desta lição, o que está achando do curso.
Compartilhe no Facebook, no Google+, Twitter e Pinterest.

Indique para seus amigos. Quanto mais comentários forem feitos, mais lições serão publicadas.

Quer receber novidades e e-books gratuitos?
›››

Vídeo-Aulas

  • Access
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • E-books

  • Access
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • Livros

  • Administração
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • Cursos Online

  • Banco de Dados
  • Carreira
  • Criação/Web
  • Excel/Projetos
  • Formação
  • + Todas as categorias
  • Conteúdo Gratuito

  • +1500 Artigos e Tutoriais
  • ASP 3.0
  • ASP.NET
  • Access Básico
  • Access Avançado
  • Excel Básico - 120 lições
  • Excel Avançado - 120 lições
  • SQL Server 2005
  • Windows 7
  • Windows XP
  • Windows 2003 Server
  • Windows 2008 Server
  • Novidades e E-books grátis

    Fique por dentro das novidades, lançamento de livros, cursos, e-books e vídeo-aulas, e receba ofertas de e-books e vídeo-aulas gratuitas para download.



    Institucional

  • Quem somos
  • Garantia de Entrega
  • Formas de Pagamento
  • Contato
  • O Autor
  • Endereço

  • Júlio Battisti Livros e Cursos Ltda
  • Rua Vereador Ivo Cláudio Weigel, 537 Universitário
  • Santa Cruz do Sul/RS
  • CEP 96816-208

  • Atendimento: (51) 3717-3796 - webmaster@juliobattisti.com.br Todos os direitos reservados, Júlio Battisti 2001-2014 ®