[E-BOOK GRÁTIS]: Windows 7 Básico, 476 pgs - QUERO RECEBER!
Você está em: PrincipalTutoriaisJorgeasantos : Matematicaconcursos045
Quer receber novidades e e-books gratuitos?
›››

Conheça o Júlio Battisti

Julio Battisti - Autor de mais de 25 livros de informática Júlio Battisti tem mais de 36 livros publicados, dezenas de e-books e é certificado Microsoft.

Ganhe o e-book a Seguir

e-book grátis Windows 7 Básico

476 páginas



Curta Nossa Fanpage

Loja Virtual do Site

Livros do Julio Battisti

FILTRO DE TUTORIAIS:




Matemática para Concursos– 45ª Parte

Estes tutoriais trarão uma série de tópicos sobre matemática básica de nível primário e secundário e que são pontos fundamentais em concursos públicos realizados, e até mesmo podem servir como fonte de consultas e recursos. Neste  tutorial serão tratados assuntos sobre progressões aritméticas, suas principais formas de resolução, exemplos práticos resolvidos, bem como definições sobre o tema.

Este tutorial não tem como objetivo ser apenas a única fonte de leitura, sendo necessário o estudo em livros técnicos e um acompanhamento personalizado em questões de maior abrangência, porém serve como uma fonte de direcionamento e consulta.

PROGRESSÕES ARITMÉTICAS

* Definição

Podemos chamar de progressão aritmética uma sucessão de termos, tais que a diferença entre um termo qualquer e o seu procedente é constante. Esta diferença é chamada de razão (r).

Uma sucessão aritmética é também chamada de progressão aritmética. Para esta soma indicada  dos respectivos termos chama-se de série aritmética.

* Classificação de uma P.A.

- Infinita ou Ilimitada

Se a progressão aritmética tiver um número infinito de termos, pode ser denominada de “infinita ou ilimitada”.

Ex.:

(8, 10, 12, 14, 16....)

(5, 10, 15, 20, 25....)

(4, 8, 12, 16, 20 ....)

- Finita ou Limitada

Se a progressão aritmética tiver um número finito de termos, pode ser denominada de “finita ou limitada”

Ex.:

(6, 8, 10)

(3, 6, 9)

- Em relação à razão (r)

Pode ser :

a) Crescente

Quando a razão “r”  > 0

Ex.:

(3, 6, 9, 12) ----> r = 3

(2, 4, 6, 8)   ----> r = 2

(15, 20, 25, 30) ---> r = 5

b) Decrescente

Quando a razão “r” < 0

Ex.:

(6, 4, 2) ---> r = -2

(12, 9, 6, 3) ----> r = -3

(16, 12, 8, 4) ----> r = -4

c) Estacionária

Quando a razão “r” = 0

Ex.:

(3, 3, 3) ----> r = 0

(7, 7, 7) ----> r = 0

(5, 5, 5) ----> r = 0

* Notação de uma PA

Observe os termos abaixo:

(a1, a2, a3, a4, ...., an – 1, an)

Logo pela definição, temos o seguinte:

a2 – a1 = a3 – a2 = an – an – 1 = ... = r

Ex.:

a) (4, 8, 12)  é uma PA onde a1 = 4 e r = 4

b) (3, 6, 9)  é uma PA onde a1 = 3 e r = 3

* Fórmula do Termo Geral de uma PA

Partindo da definição inicial, temos:

a2 = a1 + r

a3 = a1 + 2r

a4 = a1 + 3r

.

.

.

aN = a1 + (n – 1)r

Assim:

- Exemplos:

A fórmula geral nos permite obter facilmente um termo qualquer de uma progressão aritmética.

a) Calcular o 5º termo da P.A. (1,3,5,....)

Dados do problema:

a1 = 1

n = 5

r = 2

Porquê r = 2 ???

Basta olhar na progressão aritmética fornecida (1, 3, 5,...)

1 + 2 = 3

3 + 2 = 5

Fórmula geral da P.A.

an = a1 + (n – 1)r

an = 1 + (5 – 1).2

an = 1 + (4).2 ---> an = 1 + 8 -----> an = 9

* Exercícios para fixação de conteúdo

Como já informado, em todos os nossos tutoriais sempre buscamos fornecer teorias juntamente com a prática. Por isso sempre colocamos vários exercícios para que o usuário possa treinar os fundamentos.

1) A razão da P.A. cujo 1º termo é 8 e o 8º termo é 43 tem valor de :

a. ( ) 4

b. ( ) 5

c. ( ) 6

d. ( ) 7

e. ( ) 9

Solução:

Dados do problema:

a1 = 8

an = 43

n = 8

r = ?

an = a1 + (n – 1)r

43 = 8 + (8 – 1)r

43 – 8 = 7r

7r = 35

r  =  5

Dessa forma, a resposta correta é a letra “b”

Como saber se o resultado está certo ?

Basta montar a respectiva PA = (8, 13, 18, 23, 28, 33, 38, 43...)

2) Calcular o 1º termo de uma P.A., onde r = 2 e a5 = 10

a. ( ) 0

b. ( ) 4

c. ( ) 2

d. ( ) 5

e. ( ) 3

Solução:

Dados do problema:

a1 = ?

an = 10

n = 5

r = 2

Fórmula geral da PA. Sempre é bom frisar e buscar escrevê-la sempre que for solucionar problemas, assim há uma fixação melhor da fórmula.

an = a1 + (n – 1)r

10 = a1 + (5 – 1).2

10 = a1 + (4).2

a1 + 8 = 10

a1 = 10 – 8

a1 = 2

Dessa forma, a resposta correta é a letra “c”

Como saber se o resultado está certo?

Basta montar a respectiva PA = (2, 4, 6, 8, 10, 12...)

Nas próximas lições veremos mais sobre os principais temas de matemática para concursos.

Até a próxima.

Dúvidas?

Utilize a área de comentários a seguir.

Me ajude a divulgar este conteúdo gratuito!

Use a área de comentários a seguir, diga o que achou desta lição, o que está achando do curso.
Compartilhe no Facebook, no Google+, Twitter e Pinterest.

Indique para seus amigos. Quanto mais comentários forem feitos, mais lições serão publicadas.

Quer receber novidades e e-books gratuitos?
›››

Vídeo-Aulas

  • Access
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • E-books

  • Access
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • Livros

  • Administração
  • Excel
  • Programação
  • Windows/Linux
  • Redes
  • + Todas as categorias
  • Cursos Online

  • Banco de Dados
  • Carreira
  • Criação/Web
  • Excel/Projetos
  • Formação
  • + Todas as categorias
  • Conteúdo Gratuito

  • +1500 Artigos e Tutoriais
  • ASP 3.0
  • ASP.NET
  • Access Básico
  • Access Avançado
  • Excel Básico - 120 lições
  • Excel Avançado - 120 lições
  • SQL Server 2005
  • Windows 7
  • Windows XP
  • Windows 2003 Server
  • Windows 2008 Server
  • Novidades e E-books grátis

    Fique por dentro das novidades, lançamento de livros, cursos, e-books e vídeo-aulas, e receba ofertas de e-books e vídeo-aulas gratuitas para download.



    Institucional

  • Quem somos
  • Garantia de Entrega
  • Formas de Pagamento
  • Contato
  • O Autor
  • Endereço

  • Júlio Battisti Livros e Cursos Ltda
  • Rua Vereador Ivo Cláudio Weigel, 537 Universitário
  • Santa Cruz do Sul/RS
  • CEP 96816-208

  • Atendimento: (51) 3717-3796 - webmaster@juliobattisti.com.br Todos os direitos reservados, Júlio Battisti 2001-2014 ®